AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay.

نویسندگان

  • Xiulei Mo
  • Qi Qi
  • Andrei A Ivanov
  • Qiankun Niu
  • Yin Luo
  • Jonathan Havel
  • Russell Goetze
  • Sydney Bell
  • Carlos S Moreno
  • Lee A D Cooper
  • Margaret A Johns
  • Fadlo R Khuri
  • Yuhong Du
  • Haian Fu
چکیده

The c-Myc (MYC) transcription factor is a major cancer driver and a well-validated therapeutic target. However, directly targeting MYC has been challenging. Thus, identifying proteins that interact with and regulate MYC may provide alternative strategies to inhibit its oncogenic activity. In this study, we report the development of a NanoLuc-based protein-fragment complementation assay (NanoPCA) and mapping of the MYC protein interaction hub in live mammalian cells. The NanoPCA system was configured to enable detection of protein-protein interactions (PPI) at the endogenous level, as shown with PRAS40 dimerization, and detection of weak interactions, such as PINCH1-NCK2. Importantly, NanoPCA allows the study of PPI dynamics with reversible interactions. To demonstrate its utility for large-scale PPI detection in mammalian intracellular environment, we have used NanoPCA to examine MYC interaction with 83 cancer-associated proteins in live cancer cell lines. Our new MYC PPI data confirmed known MYC-interacting proteins, such as MAX, GSK3A, and SMARCA4, and revealed a panel of novel MYC interaction partners, such as RAC-α serine/threonine-protein kinase (AKT)1, liver kinase B (LKB)1, and Yes-associated protein (YAP)1. The MYC interactions with AKT1, LKB1, and YAP1 were confirmed by coimmunoprecipitation of endogenous proteins. Importantly, AKT1, LKB1, and YAP1 were able to activate MYC in a transcriptional reporter assay. Thus, these vital growth control proteins may represent promising MYC regulators, suggesting new mechanisms that couple energetic and metabolic pathways and developmental signaling to MYC-regulated cellular programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential

The oncogenic bHLH-LZ transcription factor Myc forms binary complexes with its binding partner Max. These and other bHLH-LZ-based protein-protein interactions (PPI) in the Myc-Max network are essential for the physiological and oncogenic activities of Myc. We have generated a genetically determined and highly specific protein-fragment complementation assay based on Renilla luciferase to analyze...

متن کامل

AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer.

Cancer cells may overcome growth factor dependence by deregulating oncogenic and/or tumor-suppressor pathways that affect their metabolism, or by activating metabolic pathways de novo with targeted mutations in critical metabolic enzymes. It is unknown whether human prostate tumors develop a similar metabolic response to different oncogenic drivers or a particular oncogenic event results in its...

متن کامل

Overexpression of the LKB1 gene inhibits lung carcinoma cell proliferation partly through degradation of c-myc protein.

LKB1 encodes a serine/threonine kinase generally inactivated in human lung cancers, which mediates cancer cell proliferation, migration and differentiation, but its biological function has not been completely elucidated. In this study, we demonstrated that LKB1 was associated with a substantial reduction of c-myc expression by using an inducible LKB1 expression system in the LKB1-null lung cell...

متن کامل

YAP/TAZ-mediated activation of serine metabolism and methylation regulation is critical for LKB1-deficient breast cancer progression

The crucial interplay between metabolic remodeling and the epigenetics could contribute to promote cancer progression. A remarkable association within interaction, LKB1 has been reported, suggesting that the expression of key enzymes involving de novo serine synthesis and DNA methyltransferases like DNMT1 and DNMT3A increase LKB1-deficiency cells. However, the complex interactional link between...

متن کامل

The regulatory role of aberrant Phosphatase and Tensin Homologue and Liver Kinase B1 on AKT/mTOR/c-Myc axis in pancreatic neuroendocrine tumors

Pancreatic neuroendocrine tumor (pNET) is an uncommon type of pancreatic neoplasm. Low Phosphatase and Tensin Homologue (PTEN) expression and activation of the mechanistic target of rapamycin (mTOR) pathway have been noted in pNETs, and the former is associated with poor survival in pNET patients. Based on the results of the RADIANT-3 study, everolimus, an oral mTOR inhibitor, has been approved...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmacology

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 2017